# The Hydrogen Positions in Scorodite 

By F.C. Hawthorne<br>Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba, Canada

(Received 19 March 1976; accepted 21 April 1976)


#### Abstract

FeAsO}_{4} .2 \mathrm{H}_{2} \mathrm{O} ; a=8.937\) (1), $b=10.278$ (2), $c=9.996$ (2) $\AA$; Pcab; $R=5 \cdot 7 \%$ for 1216 observed reflexions. Location of the H positions discounts previous suggestions that scorodite and its isotypes contain the hydroxonium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.


Introduction. The refinement of the crystal structure of scorodite was undertaken in order to locate the H positions, as several workers (Mooney-Slater, 1961; Tarte \& Paques-Ledent, 1968; Paques-Ledent \& Tarte, 1968) have postulated the presence of the hydroxonium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in scorodite and its isotypes. After this work was completed, a refinement of the scorodite structure was presented by Kitahama, Kiriyama \& Baba (1975); however this study did not locate the H positions although on the basis of the $\mathrm{H}_{2} \mathrm{O}-\mathrm{O}$ distances, they assumed that the H atoms were present as $\mathrm{H}_{2} \mathrm{O}$ molecules.
Single-crystal precession photographs confirmed the space group Pcab assigned by Kiriyama \& Sakurai (1949). Cell dimensions were obtained by least-squares refinement of 15 reflexions automatically aligned on a four-circle diffractometer; the resultant cell volume agrees with that derived from a Type I stability diagram (Shannon \& Prewitt, 1970) for the orthorhombic $\mathrm{M}^{3+} \mathrm{AsO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ phases. 1521 intensities were collected according to the experimental method of Hawthorne \& Ferguson (1975); standard data-reduction procedures (including absorption corrections) resulted in $1216(4 \sigma)$ observed reflexions.
With scattering factors for neutral atoms (Cromer \& Mann, 1968) and anomalous dispersion corrections from Cromer \& Liberman (1970), the refinement converged to $R=5 \cdot 9$ and $R_{w}=6 \cdot 3 \%$. Difference Fourier maps revealed two small maxima in the vicinity of each of the $\mathrm{O} W$ atoms; these were inserted as H positions
(with isotropic temperature factors fixed at $1.5 \AA^{2}$ ) and refinement of all possible variables resulted in convergence at $R$ and $R_{w}$ values of 5.7 and $6.1 \%$ (observed) and 6.7 and $6.6 \%$ (all data). Final parameters are given in Table 1 and interatomic distances and angles are in Table 2.*

Discussion. It is well known that H positions derived from X-ray data contain a strong systematic error because of the delocalization of density along the $\mathrm{O}-\mathrm{H}$ bond. Thus in the bond-strength table of scorodite (see Table 3), hydrogen-bond strengths were calculated by assigning sufficient bond strength to the acceptor anion to bring its sum to the ideal value of 2 , with the remainder assigned to the donor anion. Hydrogen-bond strengths were calculated both for $\mathrm{O} W(1)=\mathrm{OH}$, $\mathrm{O} W(2)=\mathrm{H}_{3} \mathrm{O}^{+}$and for $\mathrm{O} W(1)=\mathrm{H}_{2} \mathrm{O}, \mathrm{O} W(2)=\mathrm{H}_{2} \mathrm{O}$; for the former model, the acceptor anions were those indicated by Mooney-Slater (1961), while for the second model $\mathrm{O}(1)$ was considered as an acceptor for $\mathrm{O} W(1)$. As is apparent from Table 3, the anion sums around $\mathrm{O} W(1)$ and $\mathrm{O} W(2)$ for the hydroxonium model are completely unsatisfactory ( 1.23 and $2 \cdot 98$ ) whereas those for the water model ( $2 \cdot 10$ and $2 \cdot 10$ ) correspond closely to the ideal value of $2 \cdot 0$. This confirms the result of the present refinement, i.e. that H is present as water molecules in scorodite, and further indicates that the presence of hydroxonium in the isotypes of scorodite is impossible. The IR spectra of the $\mathrm{M}^{3+} \mathrm{X}^{5+} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ phases isotypic with scorodite (Tarte \& Paques-Ledent, 1968; Paques-Ledent \& Tarte, 1968)

[^0]Table 1. Atomic parameters for scorodite $\left(\beta_{i j} \times 10^{4}\right)$

|  | $x$ | $y$ | $z$ | $B_{\text {eq }}$ | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fe | $0 \cdot 1468$ (1) | $0 \cdot 1269$ (1) | $0 \cdot 1823$ (1) | 1.59 (2) | 52 (1) | 35 (1) | 41 (1) | 1 (1) | 2 (1) | 1 (1) |
| As | $0 \cdot 4646$ (1) | $0 \cdot 1516$ (1) | $0 \cdot 3636$ (1) | 1.42 (2) | 45 (1) | 32 (1) | 37 (1) | 0 (1) | 1 (1) | 1 (1) |
| $\mathrm{O}(1)$ | 0.4955 (7) | $0 \cdot 3012$ (6) | $0 \cdot 3044$ (6) | 1.83 (9) | 64 (7) | 34 (4) | 50 (5) | -3 (5) | 2 (5) | 6 (4) |
| $\mathrm{O}(2)$ | $0 \cdot 5831$ (7) | 0.0508 (6) | $0 \cdot 2830$ (6) | 1.83 (9) | 66 (7) | 38 (5) | 45 (5) | -2 (5) | 16 (5) | 0 (4) |
| $\mathrm{O}(3)$ | $0 \cdot 2859$ (6) | $0 \cdot 1102$ (6) | $0 \cdot 3329$ (6) | 2.02 (9) | 45 (7) | 62 (6) | 51 (6) | -11 (5) | -8(5) | 3 (5) |
| $\mathrm{O}(4)$ | $0 \cdot 4951$ (7) | $0 \cdot 1426$ (6) | $0 \cdot 5293$ (6) | 1.84 (9) | 54 (7) | 52 (5) | 41 (5) | 3 (5) | -2 (5) | 2 (4) |
| OW(1) | $0 \cdot 3282$ (8) | $0 \cdot 5543$ (7) | $0 \cdot 4305$ (7) | 2.35 (10) | 81 (9) | 60 (6) | 48 (6) | 5 (6) | -2 (6) | 10 (5) |
| $\mathrm{O} W$ (2) | $0 \cdot 2277$ (7) | $0 \cdot 8006$ (6) | $0 \cdot 3836$ (7) | 1.98 (9) | 53 (7) | 44 (5) | 60 (6) | 0 (5) | -8(5) | -1 (5) |
| H(1) | 0.377 (12) | 0.476 (11) | 0.397 (11) | 1.5 |  |  |  |  |  |  |
| H(2) | $0 \cdot 301$ (12) | 0.534 (11) | $0 \cdot 501$ (12) | 1.5 |  |  |  |  |  |  |
| H(3) | 0.157 (12) | $0 \cdot 854$ (10) | $0 \cdot 297$ (11) | 1.5 |  |  |  |  |  |  |
| H(4) | $0 \cdot 310$ (12) | $0 \cdot 810$ (11) | $0 \cdot 418$ (11) | $1 \cdot 5$ |  |  |  |  |  |  |

Table 2. Interatomic distances $(\AA)$ and angles ( ${ }^{\circ}$ ) for scorodite

| As-O(1) | 1.671 (6) |
| :---: | :---: |
| As-O(2) | 1.686 (6) |
| As-O(3) | 1.681 (6) |
| As-O(4) | 1.681 (6) |
| Mean | $1 \cdot 680$ |
| As tetrahedron |  |
| $\mathrm{O}(1)-\mathrm{O}(2)$ | $2 \cdot 698$ (8) |
| $\mathrm{O}(1)-\mathrm{O}(3)$ | 2.728 (8) |
| $\mathrm{O}(1)-\mathrm{O}(4)$ | 2.777 (8) |
| $\mathrm{O}(2)-\mathrm{O}(3)$ | 2.771 (8) |
| $\mathrm{O}(2)-\mathrm{O}(4)$ | 2.752 (8) |
| $\mathrm{O}(3)-\mathrm{O}(4)$ | 2.731 (8) |
| Mean | 2.743 |
| Fe octahedron |  |
| $\mathrm{O}(1)-\mathrm{O}(2)$ | $2 \cdot 820$ (8) |
| $\mathrm{O}(1)-\mathrm{O}(3)$ | $2 \cdot 765$ (9) |
| $\mathrm{O}(1)-\mathrm{O}(4)$ | $2 \cdot 811$ (8) |
| $\mathrm{O}(1)-\mathrm{O} W(2)$ | ) 2.988 (9) |
| $\mathrm{O}(2)-\mathrm{O}(3)$ | 2.714 (8) |
| $\mathrm{O}(2)-\mathrm{O}(4)$ | 2.821 (8) |
| $\mathrm{O}(2) \ldots \mathrm{O} W(1)$ | ) 2.853 (9) |
| $\mathrm{O}(3)-\mathrm{O} W(1)$ | 2.721 (9) |
| $\mathrm{O}(3)-\mathrm{O} W(2)$ | 2.963 (9) |
| $\mathrm{O}(4)-\mathrm{O} W(1)$ | 3.055 (9) |
| $\mathrm{O}(4) \ldots \mathrm{O} W(2)$ | 2.712 (8) |
| $\mathrm{O} W(1)-\mathrm{O} W(2)$ | 2.726 (9) |
| Mean | 2.829 |
| Hydrogen bonds |  |
| $\mathrm{O} W(1)-\mathrm{H}(1)$ | 0.97 (11) |
| $\mathrm{O} W(1)-\mathrm{H}(2)$ | 0.77 (12) |
| $\mathrm{H}(1)-\mathrm{H}(2)$ | $1 \cdot 37$ (15) |
| $\mathrm{H}(1)-\mathrm{O}(1)$ | $2 \cdot 28$ (12) |
| $\mathrm{H}(2)-\mathrm{O}(3)$ | 2.00 (12) |
| $\mathrm{O} W(1)-\mathrm{O}(1)$ | $3 \cdot 255$ (9) |
| $\mathrm{O} W(1)-\mathrm{O}(3)$ | $2 \cdot 639$ (9) |

$\mathrm{H}(1)-\mathrm{O} W(1)-\mathrm{H}(2) \quad 103$ (10) $\mathrm{O} W(1)-\mathrm{H}(1)-\mathrm{O}(1) \quad 175$ (9) $\mathrm{O} W(1)-\mathrm{H}(2)-\mathrm{O}(3) \quad 140$ (12)

| $\mathrm{Fe}-\mathrm{O}(1)$ | $1.965(6)$ |
| :--- | :--- |
| $\mathrm{Fe}-\mathrm{O}(2)$ | $1.944(6)$ |
| $\mathrm{Fe}-\mathrm{O}(3)$ | $1.960(6)$ |
| $\mathrm{Fe}-\mathrm{O}(4)$ | $1.993(6)$ |
| $\mathrm{Fe}-\mathrm{O} W(1)$ | $2.111(7)$ |
| $\mathrm{Fe}-\mathrm{O} W(2)$ | $2.035(6)$ |
| Mean | 2.001 |


| $\mathrm{O}(1)-A s-\mathrm{O}(2)$ | $107 \cdot 0(3)$ |
| :--- | :--- |
| $\mathrm{O}(1)-A s-\mathrm{O}(3)$ | $109 \cdot 0(3)$ |
| $\mathrm{O}(1)-\mathrm{As}-\mathrm{O}(4)$ | $111 \cdot 9(3)$ |
| $\mathrm{O}(2)-\mathrm{As}-\mathrm{O}(3)$ | $110 \cdot 7(3)$ |
| $\mathrm{O}(2)-\mathrm{As}-\mathrm{O}(4)$ | $109 \cdot 6(3)$ |
| $\mathrm{O}(3)-\mathrm{As}-\mathrm{O}(4)$ | $108.7(3)$ |
| Mean | $109 \cdot 5$ |


|  |  |
| :--- | :--- |
|  | $92.3(2)$ |
| $\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(2)$ | $99.5(3)$ |
| $\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(3)$ | 88 |
| $\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(4)$ | $90.5(3)$ |
| $\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O} W(2)$ | $96.6(3)$ |
| $\mathrm{O}(2)-\mathrm{Fe}-\mathrm{O}(3)$ | $88 \cdot 1(3)$ |
| $\mathrm{O}(2)-\mathrm{Fe}-\mathrm{O}(4)$ | $91.5(3)$ |
| $\mathrm{O}(2)-\mathrm{Fe}-\mathrm{O} W(1)$ | $89.3(3)$ |
| $\mathrm{O}(3)-\mathrm{Fe}-\mathrm{O} W(1)$ | $89.8(3)$ |
| $\mathrm{O}(3)-\mathrm{Fe}-\mathrm{O} W(2)$ | $95 \cdot 7(3)$ |
| $\mathrm{O}(4)-\mathrm{Fe}-\mathrm{O} W(1)$ | $96.2(3)$ |
| $\mathrm{O}(4)-\mathrm{Fe}-\mathrm{O} W(2)$ | $84 \cdot 7(3)$ |
| $\mathrm{O} W(1)-\mathrm{Fe}-\mathrm{O} W(2)$ | $82.2(3)$ |
| Mean | 90.0 |

(i) $3650 \mathrm{~cm}^{-1}$ :
(ii) $2900-3400 \mathrm{~cm}^{-1}$ : overlap of $\mathrm{O} W(1)-\mathrm{H}(2)$,

$$
\mathrm{O} W(2)-\mathrm{H}(3) \text { and }
$$ $\mathrm{O} W(2)-\mathrm{H}(4)$ stretching bands;

(iii) $1500-1700 \mathrm{~cm}^{-1}$ : overlap of $\mathrm{H}_{2} \mathrm{O}$ bending modes from both molecules.

This is more satisfactory than the previous assignment as there is no peak at $\sim 1100 \mathrm{~cm}^{-1}$ corresponding to the prominent $\mathrm{H}_{3} \mathrm{O}$ parallel bending vibration (Ferrisco \& Hornig, 1955).

## Table 3. Bond-strength table for scorodite

The upper entries correspond to $\mathrm{O} W(1)=\mathrm{OH}, \mathrm{O} W(2)=\mathrm{H}_{3} \mathrm{O}$; the lower entries correspond to $\mathrm{O} W(1)=\mathrm{H}_{2} \mathrm{O}, \mathrm{O} W(2)=\mathrm{H}_{2} \mathrm{O}$.

|  | $\mathrm{Fe}^{*}$ | $\mathrm{As}^{*}$ | $\mathrm{H}(1)$ | $\mathrm{H}(2)$ | $\mathrm{H}(3)$ | $\mathrm{H}(4)$ | $\sum$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}(1)$ | 0.569 | 1.304 | 0.127 <br> 0.127 |  |  |  | 2.000 |
|  |  |  |  |  | 0.163 |  | 2.000 |
| $\mathrm{O}(2)$ | 0.601 | 1.236 |  |  | 0.163 |  |  |
|  |  |  |  | 0.165 |  |  | 2.000 |
| $\mathrm{O}(3)$ | 0.577 | 1.258 |  | 0.165 |  |  |  |
|  |  |  |  |  |  | 0.123 | 2.000 |
| $\mathrm{O}(4)$ | 0.529 | 1.258 |  |  |  |  | 0.123 |
|  |  |  |  | 0.835 |  |  |  |
| $\mathrm{OW(1)}$ | 0.394 |  | 0.873 | 0.835 |  |  | 2.102 |
|  |  |  | 0.873 |  | 0.837 | 0.787 | 2.976 |
| $\mathrm{OW}(2)$ | 0.476 |  | - |  | 0.837 | 0.787 | 2.100 |

* Bond strengths calculated from the universal curves of Brown \& Shannon (1973).

Intensity data were collected with the cooperation of the Materials Research Institute, McMaster University, Hamilton, Ontario. Financial support was provided by the National Research Council of Canada (grant to R. B. Ferguson) and the University of Manitoba.

## References

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Ferrisco, C. C. \& Hornig, D. F. (1955). J. Chem. Phys. 23, 1464-1468.
Hawthorne, F. C. \& Ferguson, R. B. (1975). Acta Cryst. B31, 1753-1755.
Kiriyama, R. \& Sakurai, K. (1949). $X$-rays, 5, 85-97.
Kitahama, K., Kiriyama, R. \& Baba, Y. (1975). Acta Cryst. B31, 322-324.
Mooney-Slater, R. C. L. (1961). Acta Cryst. 14, $1140-$ 1146.

Paques-Ledent, M. T. \& Tarte, P. (1968). Spectrochim. Acta, 25A, 1115-1125.
Shannon, R. D. \& Prewitt, C. T. (1970). J. Inorg. Nucl. Chem. 32, 1427-1441.
Tarte, P. \& Paques-Ledent, M. T. (1968). Bull. Soc. Chim. Fr. pp. 1750-1756.
Wallace, R. (1975). Chem. Phys. 11, 189-199.


[^0]:    * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31830 ( 16 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

